Внутренняя энергия тела

Любое макроскопическое тело имеет энергию, обусловленную его микросостоянием. Эта энергия называется внутренней (обозначается U). Она равняется энергии движения и взаимодействия микрочастиц, из которых состоит тело.

Так, внутренняя энергия идеального газа состоит из кинетической энергии всех его молекул, поскольку их взаимодействием в данном случае можно пренебречь. Поэтому его внутренняя энергия зависит лишь от температуры газа (U ~ T).

Модель идеального газа предусматривает, что молекулы находятся на расстоянии нескольких диаметров друг от друга. Поэтому энергия их взаимодействия намного меньше энергии движения и ее можно не учитывать.

У реальных газов, жидкостей и твердых тел взаимодействием микрочастиц (атомов, молекул, ионов и т. п.) пренебречь нельзя, поскольку оно существенно влияет на их свойства. Поэтому их внутренняя энергия состоит из кинетической энергии теплового движения микрочастиц и потенциальной энергии их взаимодействия.

Их внутренняя энергия, кроме температуры T, будет зависеть также от объема V, поскольку изменение объема влияет на расстояние между атомами и молекулами, а, следовательно, и на потенциальную энергию их взаимодействия между собой.

Внутренняя энергия — это функция состояния тела, которая определяется его температурой T и объемом V.

Внутренняя энергия однозначно определяется температурой T и объемом тела V, характеризующими его состояние: U = U(T, V)

Чтобы изменить внутреннюю энергию тела, нужно фактически изменить или кинетическую энергию теплового движения микрочастиц, или потенциальную энергию их взаимодействия (или и ту и другую вместе). Как известно, это можно сделать двумя способами — путем теплообмена или вследствие выполнения работы. В первом случае это происходит за счет передачи определенного количества теплоты Q; во втором — вследствие выполнения работы A.

Таким образом, количество теплоты и выполненная работа являются мерой изменения внутренней энергии тела:

ΔU = Q + A.

Изменение внутренней энергии происходит за счет отданного или полученного телом некоторого количества теплоты или вследствие выполнения работы.

Если имеет место лишь теплообмен, то изменение внутренней энергии происходит путем получения или отдачи определенного количества теплоты: ΔU = Q. При нагревании или охлаждении тела оно равно:

ΔU = Q = cm(T2 — Т1) = cmΔT.

При плавлении или кристаллизации твердых тел внутренняя энергия изменяется за счет изменения потенциальной энергии взаимодействия микрочастиц, ведь происходят структурные изменения строения вещества. В данном случае изменение внутренней энергии равняется теплоте плавления (кристаллизации) тела: ΔU — Qпл = λm, где λ — удельная теплота плавления (кристаллизации) твердого тела.

Испарение жидкостей или конденсация пара также вызывает изменение внутренней энергии, которая равна теплоте парообразования: ΔU = Qп = rm, где r — удельная теплота парообразования (конденсации) жидкости.

Изменение внутренней энергии тела вследствие выполнения механической работы (без теплообмена) численно равно значению этой работы: ΔU = A.

Если изменение внутренней энергии происходит вследствие теплообмена, то ΔU = Q = cm(T2 — T1), или ΔU = Qпл = λm, или ΔU = Qп = rm.

Следовательно, с точки зрения молекулярной физики:

Внутренняя энергия тела является суммой кинетической энергии теплового движения атомов, молекул или других частиц, из которых оно состоит, и потенциальной энергии взаимодействия между ними; с термодинамической точки зрения она является функцией состояния тела (системы тел), которая однозначно определяется его макропараметрами — температурой T и объемом V.

Таким образом, внутренняя энергия — это энергия системы, которая зависит от ее внутреннего состояния. Она состоит из энергии теплового движения всех микрочастиц системы (молекул, атомов, ионов, электронов и т. п.) и энергии их взаимодействия.

Полное значение внутренней энергии определить практически невозможно, поэтому вычисляют изменение внутренней энергии ΔU, которое происходит вследствие теплопередачи и выполнения работы.

Внутренняя энергия тела равна сумме кинетической энергии теплового движения и потенциальной энергии взаимодействия составляющих его микрочастиц.

Урок 166. Предмет термодинамики. Внутренняя энергия тела


Также можно почитать…

Читайте также: